Answer: Choose the normal force acting between the object and the ground. Let's assume a normal force of 250 N.
Determine the friction coefficient.
Multiply these values by each other: 250 N * 0.13 = 32.5 N .
You just found the force of friction!
Explanation:
During that final period of time,
his acceleration is
(9 m/s - 5 m/s) / (4 sec) = 1 m/s² .
Did you have a question to ask ?
Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
This can be solve by using a triangle, because the path of the plane formed a triangle. first solve the angle form by the second direction
angle = 180 - 51 - 22 = 107 degrees
then using the cosine law
c^2 = a^2 + b^2 - 2ab cos C
c^2 = 76^2 + 123^2 - 2 ( 76) ( 123) cos ( 107)
c = 162.4 mi <span>the crew fly to go directly to the field
</span>
Answer:
Van der Waal's equation
Explanation:
The Van der Waal's equation is use to calculate the properties of a gas under nonideal or real gases conditions.
.
Here P, V ,T ,n and R have usual meaning as in the ideal gas equation
that is PV=nRT
with the difference of constant a and b. a and b are constants representing magnitude of intermolecular attraction and excluded volume respectively respectively.