The vehicle's centripetal acceleration is equal to 22.5m/s²
Radius, r = 10 meter
Speed, V = 15 m/s
To ascertain the car's centripetal acceleration
A(c) = V²/R
We obtain the following when we enter the formula's parameters:
A(c) = 152/10
A(c) = 225/10
A(c) = 22.5m/s²
<h3>What is Centripetal acceleration ?</h3>
When an item moves in a circular route, one of its motion characteristics is centripetal acceleration. Any motion in a circle with an acceleration vector pointing in the direction of the circle's centre is referred to as centripetal acceleration.
- Centripetal forces cause accelerations at the centripetal axis. With the exception of the Earth's rotation around the Sun, any satellite's circular motion around a celestial body is brought on by the centripetal force produced by their mutual gravitational pull.
Hence, Centripetal acceleration is
22.5 m/s²
Learn more about Centripetal acceleration here:
brainly.com/question/79801
#SPJ4
Answer:
Hey
It would have to be C because no net energy is lost.
(1.00 atm) (0.1156 L) = (n) (0.08206 L atm / mol K) (273 K) I hoped that helped
Answer:
The correct answer is B
Explanation:
To calculate the acceleration we must use Newton's second law
F = m a
a = F / m
To calculate the force we use the defined pressure and the radiation pressure for an absorbent surface
P = I / c absorbent surface
P = F / A
F / A = I / c
F = I A / c
The area of area of a circle is
A = π r²
We replace
F = I π r² / c
Let's calculate
F = 8.0 10⁻³ π (1.0 10⁻⁶)²/3 10⁸
F = 8.375 10⁻²³ N
Density is
ρ = m / V
m = ρ V
m = ρ (4/3 π r³)
m = 4500 (4/3 π (1 10⁻⁶)³)
m = 1,885 10⁻¹⁴ kg
Let's calculate the acceleration
a = 8.375 10⁻²³ / 1.885 10⁻¹⁴
a = 4.44 10⁻⁹ m/s² absorbent surface
The correct answer is B