Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Explanation:
Some Rules Regarding Oxidation Numbers:
- Hydrogen has oxidation number of + 1 except in hydrides where it is -1
- Oxygen has oxidation number of -2 except in peroxides where it is -1
- Some elements have fixed oxidation numbers. E.g Halogen group elements has oxidation number of -1
- Oxidation number of a compound is the sum total of the individual elements and a neutral compound has oxidation number of 0.
A. HI
Hydrogen has oxidation of + 1
Oxidation number of I:
1 + x = 0
x = -1
B. PBr3
Br has oxidation number of - 1
Oxidation number of Pb:
x + 3 (-1) = 0
x = + 3
C. KH
Hydrogen has oxidation of + 1
Oxidation number of K:
1 + x = 0
x = -1
D. H3PO4
Hydrogen has oxidation number of + 1
Oxygen has oxidation number of -2
Oxidation number of P:
3(1) + x + 4(-2) = 0
3 + x - 8 =0
x = 5
Answer:
0.225 mol = 0.23 mol to 2 significant figures
Explanation:
Calculate the moles of oxygen needed to produce 0.090 mol of water
The equation of the reaction is given as;
2 C2H2 + 5 O2 --> 4 CO2 + 2 H2O
From the equation of the reaction;
5 mol of O2 produces 2 mol of H2O
x mol of O2 produces 0.090 mol of H2O
5 = 2
x = 0.090
x = 0.090 * 5 / 2
x = 0.225 mol
Oxygen because it is on the left of the periodic table so it has a strong pull.