The correct answer for the question that is being presented above is this one: "C. planetesimals ® heavier elements ® inner planets ® protoplanets" The list of the stages of development of the inner planets is this <span>C. planetesimals ® heavier elements ® inner planets ® protoplanets</span>
<h3>
Answer:</h3>
0.144 moles
<h3>
Explanation:</h3>
- The relationship between mass of a compound, number of moles and molar mass of the compound is given by;
- Number of moles = Mass ÷ Molar mass
- Molar mass is equivalent to the relative formula mass of the compound that is calculated the atomic masses of the elements making the compound.
In this case;
Our compound, KClO3 will have a molar mass of;
= 39 + 35.5 + 4(16)
= 138.5 g/mol
Mass of KClO3 is 20 g
Therefore;
Number of moles = 20 g ÷ 138.5 g/mol
= 0.144 moles
Thus, the number of moles in 20 g of KClO3 is 0.144 moles
Answer: B) 2 (as indicated by electron distribution shown), but taking into account the real properties of this element, 4,7,8 also occur (see below).
Explanation:
This is the electron complement/atomic number of ruthenium, which actually has the structure [Kr] 5s1 4d7
Nevertheless, Ru does not form Ru(I) compounds and few Ru(II) compounds (RuCl2, RuBr2, RuI2). It also forms Ru(III)Cl3 and a larger number of Ru(IV) compounds, e.g. RuO2, RuS2. It also forms RuO4
The major visible difference between<span> the two are crystal size, </span>intrusive rocks<span> have a larger crystal/grain texture due to the slow cooling of magma below the earth surface which encourages the growth of larger crystals, while </span>extrusive rocks<span>, because of the rapid cooling at/above the earth's surface does the opposite. Hope I helped</span>