Answer:
Water has the greatest ΔEN
ΔEN H₂O → 3.4 - 2.1 = 1.3 Option D.
Explanation:
We should find the Electronegativity data in the Periodic table for all the elements:
C : 2.6
O: 3.4
H: 2.1
S: 2.6
N: 3.0
a. ΔEN CO₂ → 3.4 - 2.6 = 0.4
b. ΔEN H₂S → 2.6 - 2.1 = 0.5
c. ΔEN NH₃ → 3 - 2.1= 0.9
d. ΔEN H₂O → 3.4 - 2.1 = 1.3
Answer:
HF is the limiting reactant
Explanation:
The balanced equation for the reaction is given below:
SiO₂ + 4HF —> SiF₄ + 2H₂O
From the balanced equation above,
1 mole of SiO₂ reacted with 4 moles of HF.
Finally, we shall determine the limiting reactant. This can be obtained as illustrated below:
From the balanced equation above,
1 mole of SiO₂ reacted with 4 moles of HF.
Therefore, 7.5 moles of SiO₂ will react with = 7.5 × 4 = 30 moles of HF.
From the calculation made above, we can see clearly that it will take a higher amount (i.e 30 moles) of HF than what was given from the question (i.e 5 moles) to react completely with 7.5 moles of SiO₂.
Therefore, HF is the limiting reactant and SiO₂ is the excess reactant.
<u>Answer:</u> The mass of sucrose required is 69.08 g
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 8.80 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (sucrose) = ?
Molar mass of sucrose = 342.3 g/mol
Volume of solution = 564 mL (Density of water = 1 g/mL)
R = Gas constant = 
T = Temperature of the solution = 290 K
Putting values in above equation, we get:

Hence, the mass of sucrose required is 69.08 g