it's up in Gogle trust me
Answer:
The induced current is 26.7 mA
Explanation:
Given;
area of the loop, A = 0.078 m²
initial magnetic field, B₁ = 3.8 T
change in the magnetic field strength, dB/dt = 0.24 T/s
The induced emf is calculated as;
The resistance of the loop = 0.7 Ω
The induced current is calculated as;
<span>They are used to measure and map effluent and pollution discharges from factories and sewerage plants, and the movement of sand around harbours, rivers and bays. Radioactive materials used for such purposes have short half-lives and decay to background levels within days.</span>
Answer:
New Resistance = 0.5556 ohm
Explanation:
Resistance = resistivity * length /area
Here since resistivity and length are constant, we only need to see how the resistance increases or decreases with change in area.
New Area = pi * (3*D)^2 / 4
Old Area = pi * D^2 / 4
The ratio of new area / old area is :
Since area increases 9 times, and it is inversely proportional to resistance:
Resistance decreases by 9 times.
So, old resistance = Voltage / Current = 10 / 2 = 5 ohm
New Resistance = 5 / 9 = 0.5556 ohm (decreases by 9 times)
Answer:
A. carbon and boron
Explanation:
Carbon and boron is not an alloy.
An allow forms between metals and metals using their huge electron could.
Carbon is a non-metal, boron is a also a non-metal
Two non-metals combining together does not make an alloy.
Iron, nickel, aluminum are all metals.