Answer: 16N
Explanation:
Given that:
mass of box M= 2 kg
Initial speed V1 = 4 m/s
Final speed V2 = 8 m/s
Time taken T= 0.5 s
Average strength of this force F = ?
Now, recall that Force is the rate of change of momentum per unit time
i.e Force = momentum / time
Hence, F = M x (V2 - V1)/T
F = 2kg x (8 m/s - 4 m/s) / 0.5s
F = 2kg x (4 m/s / 0.5s)
F = 2kg x 8 m/s/s)
F = 16N
Thus, the average strength of this
force is 16 newton.
Given parameters;
Time taken to complete a lap = 8.667s
Radius of flower = 13.9cm
convert to SI unit of m, 100cm = 1m
13.9cm gives
= 0.139m
Unknown = speed
To solve this problem, we need to first find the circumference of the flower.
Circumference of the circular flower = 2 π r
where r is the radius of the flower;
Circumference = 2 x 3.142 x 0.139 = 0.87m
Now to find the how fast the bug is travelling,
Speed = 
Since the bug covered 1 lap, the distance is 0.87m
Now input the parameters and solve for speed;
Speed =
= 0.1m/s
The bug is travelling at a speed of 0.1m/s
Answer:
The amount of work we could expect to get out of the system per second = 28,000J/s
Explanation:
Given the power supplied to the system as 28kW;
Energy = power / time
At very best, the amount of work we could expect to get out of the system per second = 28,000 W / 1 second = 28,000J/s
Therefore, for a a furnace which supplies 28kW of thermal power at 300C to an engine and exhausts waste energy at 20C.
At the very best, the amount of work we could expect to get out of the system per second = 28,000J/s
<h3><u>Answer;</u></h3>
Are moving up and down.
As a transverse wave travels through a rope from left to right, the parts of the rope <u>are moving up and down</u>.
<h3><u>Explanation;</u></h3>
- Transverse waves occur when a disturbance causes oscillations perpendicular to the propagation, that is the direction of energy transfer.
- <em><u>Particles of the medium move perpendicular to the direction the transverse wave itself is moving. For example, if the wave is moving to the right, the particles of the medium are moving up and down.</u></em>
- <em><u>Therefore, as a transverse wave travels through a rope from left to right, the parts of the rope are moving up and down.</u></em>
X-component of a projectile in flight =
(initial x-component)
plus
(initial horizontal component of velocity) x (flight time so far)