Here in all such collision type question we can use momentum conservation as we can see that there is no external force on this system

as we know that




now from above equation we have



so the speed of combined system is 2 m/s
To keep<span> noise from entering your space, look for </span>sound<span> blockers</span>
In a displacement/time graph, the slope of the line is equal to the velocity
Answer:
option B is the correct answer
Explanation:
please follow me and Mark me brainliest please
Answer:
1838216 J
Explanation:
95 km/h = 26.39 m/s
40 km/h = 11.11 m/s
Initial kinetic energy
= .5 x 1600 x(26.39)²
= 557145.67 J
Final kinetic energy
= .5 x 1600 x ( 11.11)²
= 98745.68 J
Loss of kinetic energy
= 458400 J
Loss of potential energy
= mg x loss of height
= 1600 x 9.8 x 340 sin 15
= 1379816 J
Sum of Loss of potential energy and Loss of kinetic energy
= 1379816 + 458400
= 1838216 J
This is the work done by the friction . So this is heat generated.