Here if we assume that there is no air friction on both balls then we can say

now the acceleration is given as


so here both the balls will have same acceleration irrespective of size and mass
so we can say that to find out the time of fall of ball we can use


now from above equation we can say that time taken to hit the ground will be same for both balls and it is irrespective of its mass and size
The heat energy transferred by the iron nail is 4680 J
Explanation:
The thermal energy transferred by a substance to another substance is given by the equation

where
m is the mass of the substance
C is its specific heat capacity
is its change in temperature
For the iron nail in this problem, we have:
m = 16 g


So, the amount of heat energy given off by the nail is

where the negative sign indicates that the heat is given off.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
force for start moving is 7.49 N
force for moving constant velocity 2.25 N
Explanation:
given data
mass = 7.65 kg
kinetic coefficient of friction = 0.030
static coefficient of friction = 0.10
solution
we get here first weight of block of ice that is
weight of block of ice = mass × g
weight of block of ice = 7.65 × 9.8 = 74.97 N
so here Ff = Fa
so for force for start moving is
Fa = weight × static coefficient of friction
Fa = 74.97 × 0.10
Fa = 7.49 N
and
force for moving constant velocity is
Fa = weight × kinetic coefficient of friction
Fa = 74.97 × 0.030
Fa = 2.25 N
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020