Using row 4:
<span>coefficients are: 1, 4, 6, 4, 1 </span>
<span>a^4 + a^3b + a^2b^2 + ab^3 + b^4 </span>
<span>Now adding the coefficients: </span>
<span>1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4 </span>
<span>Substitute a and b: </span>
<span>a = 4x </span>
<span>
b = -3y </span>
<span>1(4x)^4 + 4(4x)^3(-3y) + 6(4x)^2(-3y)^2 + 4(4x)(-3y)^3 + 1(-3y)^4 </span>
<span>Now simplify the above: </span>
<span>256x^4 - 768x^3y + 864x^2y^2 - 432xy^3 + 81y^4 </span>
Another effective strategy for helping students improve their mathematics performance is related to solving word problems. More specifically, it involves teaching students how to identify word problem types based on a given problem’s underlying structure, or schema. Before learning about this strategy, however, it is helpful to understand why many students struggle with word problems in the first place.
Difficulty with Word Problems
Most students, especially those with mathematics difficulties and disabilities, have trouble solving word problems. This is in large part because word problems require students to:
Answer:
40,000
Step-by-step explanation:
You just add 60,000 and 30,000 which makes 90,000 and subtract it with the 50,000 then which equals to 40,000. <em>you don't need to rate me.</em>
<em />
Answer:Triangle is 6. Question wasn’t very clean so I hope this helps
Step-by-step explanation:
4=4
6+4= ∆+4
Subtract 4 from each side
6=∆