1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natima [27]
3 years ago
13

Makayla leaves a tip of $15. This was 15% of the bill before the tip.

Mathematics
1 answer:
Minchanka [31]3 years ago
8 0

Answer:

100

Step-by-step explanation:

both the percentage and the money have the same number, and there's always 100% so it'd be 100 before the tip

You might be interested in
Pls help, i will give brainliest to correct answer
Assoli18 [71]

Answer:

5,-1  

Step-by-step explanation:

edited.... I gave 1/3   AC  earlier (misread the Q)

   This means AC is divided into fourths

x    from  6 to 2 is -4     1/4th of this added to 6 is

    6 - 1/4 * 4 =   5

y    from 1 to -7  is -8    1/4th of this added to 1 is

                   1 - 1/4 * 8 = -1  

7 0
1 year ago
Simplify 3a(- 3a+4)- 4(3-2)
Zarrin [17]
-9a to the second power+12a-4
6 0
3 years ago
3x + 14
Vikentia [17]

Answer:

id choose the answer 3(x+1)-(!-x) and 2x + 3

Step-by-step explanation:

4 0
2 years ago
The sum of 6 consecutive integers is 387. What is the sixth number in this sequence.
11111nata11111 [884]

Answer:

67!

Step-by-step explanation:

A way to look at it is, since the number is 387, it can be broken into 6 parts. 50x6 is about 300. That leaves 87 to be left over. So it's safe to assume each number will be around 50-60, so I started to add up six consecutive numbers together until I reached my final set of numbers to reach 387.

My numbers were 62+63+64+65+66+<u><em>67</em></u>=387

I hope this makes sense!

7 0
2 years ago
Find the vertices and foci of the hyperbola. 9x2 − y2 − 36x − 4y + 23 = 0
Xelga [282]
Hey there, hope I can help!

NOTE: Look at the image/images for useful tips
\left(h+c,\:k\right),\:\left(h-c,\:k\right)

\frac{\left(x-h\right)^2}{a^2}-\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{\:is\:the\:standard\:equation\:for\:a\:right-left\:facing:H}
with the center of (h, k), semi-axis a and semi-conjugate - axis b.
NOTE: H = hyperbola

9x^2-y^2-36x-4y+23=0 \ \textgreater \  \mathrm{Subtract\:}23\mathrm{\:from\:both\:sides}
9x^2-36x-4y-y^2=-23

\mathrm{Factor\:out\:coefficient\:of\:square\:terms}
9\left(x^2-4x\right)-\left(y^2+4y\right)=-23

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}9
\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1
\frac{1}{1}\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Convert}\:x\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x^2-4x+4\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert}\:y\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y+4\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Refine\:}-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right) \ \textgreater \  \frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=1 \ \textgreater \  Refine
\frac{\left(x-2\right)^2}{1}-\frac{\left(y+2\right)^2}{9}=1

Now rewrite in hyperbola standardform
\frac{\left(x-2\right)^2}{1^2}-\frac{\left(y-\left(-2\right)\right)^2}{3^2}=1

\mathrm{Therefore\:Hyperbola\:properties\:are:}\left(h,\:k\right)=\left(2,\:-2\right),\:a=1,\:b=3
\left(2+c,\:-2\right),\:\left(2-c,\:-2\right)

Now we must compute c
\sqrt{1^2+3^2} \ \textgreater \  \mathrm{Apply\:rule}\:1^a=1 \ \textgreater \  1^2 = 1 \ \textgreater \  \sqrt{1+3^2}

3^2 = 9 \ \textgreater \  \sqrt{1+9} \ \textgreater \  \sqrt{10}

Therefore the hyperbola foci is at \left(2+\sqrt{10},\:-2\right),\:\left(2-\sqrt{10},\:-2\right)

For the vertices we have \left(2+1,\:-2\right),\:\left(2-1,\:-2\right)

Simply refine it
\left(3,\:-2\right),\:\left(1,\:-2\right)
Therefore the listed coordinates above are our vertices

Hope this helps!

8 0
3 years ago
Other questions:
  • What is the slope of any line parallel to y = 4x + 17
    13·2 answers
  • 1)Find the value of the monomial –0.125y4 for y=–2 2)Find the value of the monomial. 12x2y for x=–0.3, y= 1/6 3)Represent the fo
    11·1 answer
  • Help!!!!!!!!!!!!!!!!!!!!! No. 58
    14·1 answer
  • What is the probability that the person is from California, given that the person prefers brand A? Round your answer to two deci
    13·2 answers
  • Please help with this problem!!
    5·2 answers
  • 05.01 MC)
    9·1 answer
  • How do you solve for X and round the nearest tenth​
    10·1 answer
  • In the diagram of circle A, what is the measure of _XYZ?<br> 35 70 75 140
    14·1 answer
  • write a sample problem in which you factor a monomial from a polynomial. Then write and factor another problem that is a quadrat
    7·1 answer
  • Given the line 2x + 3y = 5, write an equation for a line in slope intercept form that is parallel
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!