Given:
A(3,0)
B(1,-2)
C(3,-5)
D(7,-1)
1) reflect across x=-4
essentially calculate the difference between the x=-4 line and Px and "add" it in the other direction to x=-4
A(-4-(3-(-4)),0)=A(-11,0)
B(-4-(1-(-4)),-2)=B(-9,-2)
C(-4-(3-(-4),-5))=C(11,-5)
D(-4-(7-(-4)),-1)=D(-15,-1)
2) translate (x,y)->(x-6,y+8)
A(-3,8)
B(-5,6)
C(-3,3)
D(1,7)
3) clockwise 90° rotation around (0,0), flip the x&y coordinates and then decide the signs they should have based on the quadrant they should be in
A(0,-3)
B(-2,-1)
C(-5,-3)
D(-1,-7)
D) Dilation at (0,0) with scale 2/3, essentially multiply all coordinates with the scale, the simple case of dilation, because the center point is at the origin (0,0)
A((2/3)*3,(2/3)*0)=A(2,0)
B((2/3)*1,(2/3)*-2)=B(2/3,-4/3)
C((2/3)*3,(2/3)*-5)=C(2,-10/3)
D((2/3)*7,(2/3)*-1)=D(14/3,-2/3)
Answer:
1/12 of the container of milk will be left in the container
Step-by-step explanation:
To solve the question, we first note the variables
Volume of milk available = 9/12 of a container
Volume of milk poured in a pan = 2/3 of a container
Quantity of milk left = Initial quantity of milk less the quantity poured out
That is 9/12-2/3 = 1/12 of the container of milk
This means that there will be only 1/12 of the container of milk left
End behavior: f. As x -> 2, f(x) -> ∞; As x -> ∞, f(x) -> -∞
x-intercept: a. (3, 0)
Range: p. (-∞, ∞)
The range is the set of all possible y-values
Asymptote: x = 2
Transformation: l. right 2
with respect to the next parent function:

Domain: g. x > 2
The domain is the set of all possible x-values
We can find the acceleration via

We have


Then by definition of average acceleration,

so that


We alternatively could have found the time without knowing the acceleration. Since acceleration is constant, the average velocity is

Then


Answer:
Always
Step-by-step explanation:
Right triangles are always similar.
All right triangles have a 90 degree angle.
This means that, they would all look visually similar because of the 90 degree angle.