Answer:
95 J
Explanation:
You can calculate efficiency by dividing useful output by total input, then multiplying it to 100.
So the foumula goes like:
Efficiency= (Useful output/Total input)x100
In this question,
Efficiency= 95%
Useful output= x
Total input= 200
Therefore;
95=(x/200)x100
0.95=x/100
x=0.95x100
x=95 Joules
Answer:
a = 3.27 m/s²
v = 2.56 m/s
Explanation:
given,
mass A = 1 kg
mass B = 2 kg
vertical distance between them = 1 m










a = 3.27 m/s²
The speed of the system at that moment is:
v² = u² + 2×a×s
v² = 0² + 2× 3.27 × 1
v ² = 6.54
v = 2.56 m/s
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.