Answer:2.541
Explanation:
Well , Potential Energy = mgh
m=mass = 82
g=acceleration of gravity=9.80m/s^2
h=what we are looking for
PE=mgh
PE/(mg) = h
Substitute in the values:
1970/(82 x 9.8) = h 2.541
Answer:
Transferred material is in the same relative position on the disk as on the original sample
Explanation:
The usefulness of blotting techniques in molecular biology is that transferred material is in the same relative position on the disk as on the original sample
Energy from the gravitational potential store in converted to kinetic energy. Air friction acts against the object, dissipating some energy as heat or sound. The object will continuously accelerate until the acceleration is equal to the air friction acting against it. This is when it reaches terminal velocity
1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry