The distance traveled by the second hand of the clock is 0.471 m.
<h3 />
To calculate the distance the tip of the second hand of the clock travel in 45 seconds, we use the formula below.
<h3>Formula:</h3>
- L = 2πr∅/360.................. Equation 1
<h3> Where: </h3>
- L = distance traveled by the tip of the second hand.
- r = Length of the second hand
- ∅ = angle formed by the second hand of the clock
- π = pie
From the question,
<h3>Given:</h3>
- r = 10 cm = 0.1 m
- ∅ = (360×45/60) = 270°
- π = 3.14
Substitute these values into equation 1
- L = 0.1×2×270×3.14/360
- L = 0.471 cm.
Hence, The distance traveled by the second hand of the clock is 0.471 m
Learn more about distance traveled here: brainly.com/question/4931057
<h3 />
5% of £42 = £2.10
10% of £42 = £4.20
15% of £42 = £6.30
£42 - £6.30 = £35.70
£50 - £35.70 = £14.30
the answer is £14.30
add them both then you get the awnser if the four is not a negative. if the four is a negative use division.
Answer:
2xy(x+5)(4x−1)
Step-by-step explanation:
1 Find the Greatest Common Factor (GCF).
GCF = 2xy
2 Factor out the GCF. (Write the GCF first. Then, in parentheses, divide each term by the GCF.)
2xy (8x^3y + 38x^2y/2xy + −10xy/2xy)
3 Simplify each term in parentheses.
2xy(4x^2 +19x−5)
4 Split the second term in 4x^2+19x-5 into two terms.
2xy(4x^2 +20x−x−5)
5 Factor out common terms in the first two terms, then in the last two terms.
2xy(4x(x+5)−(x+5))
6 Factor out the common term x+5.
2xy(x+5)(4x−1)
Step-by-step explanation:
12. Cos 60° = 8/c
0,5 = 8/c
0,5 c = 8
c = 16
D² = V16²-8²
= V256-64
=V192 = V16×12 = 4V12
= 4V4×3 = 8V3
13. Cos 30° = 6/b
V3/2 = 6/b
V3 b = 12
b = 12/V3
b/Sin B = a /sin A
b/Sin90° = 6/ sin 60°
<u>b</u> = <u> </u><u> </u><u> </u><u>6</u><u> </u><u> </u><u> </u>
1 V3/2
b× <u>V3</u> = 6
2
b = 6× 2/V3
= 12/V3