Answer:
Mole fraction for solute = 0.1, or 10%
Molality = 6.24 mol/kg
Explanation:
22.3% by mass → In 100 g of solution, we have 22.3 g of HCOOH
Mass of solution = 100 g
Mass of solute = 22.3 g
Mass of solvent = 100 g - 22.3g = 77.7 g
Let's convert the mass to moles
22.3 g . 1mol/ 46 g = 0.485 moles
77.7 g. 1mol / 18 g = 4.32 moles
Total moles = 4.32 moles + 0.485 moles = 4.805 moles
Xm for solute = 0.485 / 4.805 = 0.100 → 10%
Molality → mol/ kg → we convert the mass of solvent to kg
77.7 g. 1 kg / 1000g = 0.0777 kg
0.485 mol / 0.0777 kg = 6.24 m
Answer: A, C, E
Explanation: PLATO. all testable questions.
I think it’s light
Have fun :)
The correct one is Respiratory Distress !!
As rest are not concerned with air pollution !!
Considering the Charles' law, the gas would have a temperature of -109.2 C.
<h3>Charles' law</h3>
Finally, Charles' law establishes the relationship between the volume and temperature of a gas sample at constant pressure. This law says that the volume is directly proportional to the temperature of the gas. That is, if the temperature increases, the volume of the gas increases, while if the temperature of the gas decreases, the volume decreases.
Charles' law is expressed mathematically as:

If you want to study two different states, an initial state 1 and a final state 2, the following is true:

<h3>Temperature of the gas in this case</h3>
In this case, you know:
- P1= 1800 psi
- V1= 10 L
- T1= 20 C= 293 K (being 0 C= 273 K)
- P2= 1800 psi
- V2= 6 L
- T2= ?
You can see that the pressure remains constant, so you can apply Charles's law.
Replacing in the Charles's law:

Solving:


<u><em>T2=163.8 K= -109.2 C</em></u>
The gas would have a temperature of -109.2 C.
Learn more about Charles's law:
brainly.com/question/4147359?referrer=searchResults