This problem is providing information about the moles of carbon dioxide, 2.76 mol, and asks for the volume this amount takes up, turning out to be 61.8 L according to the Avogadro's law:
<h3>Avogadro's law:</h3><h3 />
In chemistry, gas laws are used to relate the behavior of gases by virtue of the their pressure, volume, temperature and moles; thus several gas laws exist for us to do so, however, we here focus on the Avogadro's law which relates the volume and moles when both temperature and pressure are held constant.
In such a way, since no information on the constant variables is given, we assume the mentioned carbon dioxide is at STP, (0 °C and 1 atm), which means that we can use the following equivalence statement derived from the ideal gas law (PV=nRT):
22.4 L = 1 mol
Hence, we calculate the required volume:
Learn more about ideal gases: brainly.com/question/11676583
"NH4+ <----> NH3 + H+
The constant of this equilibrium is: K = Kw / Kb = 1 x 10^-14 / 1.8 x 10^-5 =5.56 x 10^-10
5.56 x 10^-10 = x^2 / 0.20-x
x = [H+] =1.1 x 10^-5 M
pH = 5.0"
Answer:
Volume of container = 0.0012 m³ or 1.2 L or 1200 ml
Explanation:
Volume of butane = 5.0 ml
density = 0.60 g/ml
Room temperature (T) = 293.15 K
Normal pressure (P) = 1 atm = 101,325 pa
Ideal gas constant (R) = 8.3145 J/mole.K)
volume of container V = ?
Solution
To find out the volume of container we use ideal gas equation
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
First we find out number of moles
<em>As Mass = density × volume</em>
mass of butane = 0.60 g/ml ×5.0 ml
mass of butane = 3 g
now find out number of moles (n)
n = mass / molar mass
n = 3 g / 58.12 g/mol
n = 0.05 mol
Now put all values in ideal gas equation
<em>PV = nRt</em>
<em>V = nRT/P</em>
V = (0.05 mol × 8.3145 J/mol.K × 293.15 K) ÷ 101,325 pa
V = 121.87 ÷ 101,325 pa
V = 0.0012 m³ OR 1.2 L OR 1200 ml
It’s extremely bad quality I really can’t read it
Answer:
the new concentration is 0.60M
Explanation:
The computation of the new concentration is shown below;
We know that
M1V1=M2V2
(3.0M) (10.0 mL) = M2 (50.0mL)
30 = M2 (50.0mL)
So, M2 = 0.60 M
Hence, the new concentration is 0.60M
The same is considered and relevant