Answer:
Higher than 59 °C because dipole-dipole interactions in iodine monochloride are stronger than dispersion forces in bromine.
Explanation:
I just took the test and i got it right
Answer:
40% of the energy release by the peanut is 3500 calories
Explanation:
One calorie is defined as the amount of energy required to increase the temperature of one gram of water for one degree Celsius (or one Kelvin)
Equation for energy gain by water is
Q = mcΔT
where, m is the mass of the object
c is the specific heat capacity
ΔT is the change in temperature
c = 1.0 cal/g?°C.
m = 50 g
ΔT = 50°C - 22°C
= 28°C
Q = (50)× (1)× (28)
= 1400calories
The peanut contain 1400calories of energy .
amount that 40% of energy is released to water ,
so,
Q = 1400 calories / 0.4
= 3500 calories
Therefore, 40% of the energy release by the peanut is 3500 calories
Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ