1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
6

Determine if the following are in proportion :

Mathematics
1 answer:
KATRIN_1 [288]3 years ago
3 0

Step-by-step explanation:

The given numbers are : 32 , 48 , 140 , 120

First number is 32

Second number is 48

Third number is 140

Fourth number is 120

First number/second number :

\dfrac{N_1}{N_2}=\dfrac{32}{48}\\\\=\dfrac{2}{3}\ ....(1)

Third number/Fouth number :

\dfrac{N_3}{N_4}=\dfrac{140}{120}\\\\=\dfrac{7}{6}\ ....(2)

From equation (1) and (2) we can see that the ratio is not same. Hence, they are not in proportion.

You might be interested in
If the p-value is smaller than the level of significance, what conclusion should we reach?
marshall27 [118]

If the p-value is smaller than the level of significance, then it indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null hypothesis is correct.

In this question,

A p-value is a probability, calculated after running a statistical test on data and it lies between 0 and 1. The p-value only tells you how likely the data you have observed is occurred under the null hypothesis.

One of the most commonly used p-value is 0.05. If the value is greater than 0.05, the null hypothesis is considered to be true. If the calculated p-value turns out to be less than 0.05, the null hypothesis is considered to be false, or nullified (hence the name null hypothesis).

A small p-value (< 0.05 in general) means that the observed results are unusual, assuming that they were due to chance only. Now, the smaller the p-value, the stronger the evidence that should reject the null hypothesis.

Hence we can conclude that if the p-value is smaller than the level of significance, then it indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null hypothesis is correct.

Learn more about p-value here

brainly.com/question/15855760

#SPJ4

7 0
2 years ago
Can someone help me pls
Pepsi [2]

Answer:

jen

Step-by-step explanation:

Jordan's total number of sit-ups

20+24+28+32= 104

Jen's total number of sit-ups

40+48+56+62=208

divide Jen's sit-ups by Jordan's sit-ups

208/104=2

3 0
3 years ago
Find the area of the circle. Round your answer to the nearest hundredth 3in
FrozenT [24]

Answer:

28.26 square inches

Step-by-step explanation:

Formula for area of a circle:

A=\pi r^2

Radius is 3.

A= \pi (3)^2\\A=\pi 9

Use 3.14 for pi:

A = 3.14 * 9 = 28.26\\A=28.26

The area should be 28.26 square inches.

4 0
3 years ago
Which series of transformations will not map figure H onto itself
7nadin3 [17]

Answer:

D

Step-by-step explanation:

Given a square with vertices at points (2,1), (1,2), (2,3) and (3,2).

Consider option A.

1st transformation (x+0,y-2) will map vertices of the square into points

  • (2,1)\rightarrow (2,-1);
  • (1,2)\rightarrow (1,0);
  • (2,3)\rightarrow (2,1);
  • (3,2)\rightarrow (3,0).

2nd transformation = reflection over y = 1 has the rule (x,2-y). So,

  • (2,-1)\rightarrow (2,3);
  • (1,0)\rightarrow (1,2);
  • (2,1)\rightarrow (2,1);
  • (3,0)\rightarrow (3,2)

These points are exactly the vertices of the initial square.

Consider option B.

1st transformation (x+2,y-0) will map vertices of the square into points

  • (2,1)\rightarrow (4,1);
  • (1,2)\rightarrow (3,2);
  • (2,3)\rightarrow (4,3);
  • (3,2)\rightarrow (5,2).

2nd transformation = reflection over x = 3 has the rule (6-x,y). So,

  • (4,1)\rightarrow (2,1);
  • (3,2)\rightarrow (3,2);
  • (4,3)\rightarrow (2,3);
  • (5,2)\rightarrow (1,2)

These points are exactly the vertices of the initial square.

Consider option C.

1st transformation (x+3,y+3) will map vertices of the square into points

  • (2,1)\rightarrow (5,4);
  • (1,2)\rightarrow (4,5);
  • (2,3)\rightarrow (5,6);
  • (3,2)\rightarrow (6,5).

2nd transformation = reflection over y = -x + 7 will map vertices into points

  • (5,4)\rightarrow (3,2);
  • (4,5)\rightarrow (2,3);
  • (5,6)\rightarrow (1,2);
  • (6,5)\rightarrow (2,1)

These points are exactly the vertices of the initial square.

Consider option D.

1st transformation (x-3,y-3) will map vertices of the square into points

  • (2,1)\rightarrow (-1,-2);
  • (1,2)\rightarrow (-2,-1);
  • (2,3)\rightarrow (-1,0);
  • (3,2)\rightarrow (0,-1).

2nd transformation = reflection over y = -x + 2 will map vertices into points

  • (-1,-2)\rightarrow (4,3);
  • (-2,-1)\rightarrow (3,4);
  • (-1,0)\rightarrow (2,3);
  • (0,-1)\rightarrow (3,2)

These points are not the vertices of the initial square.

5 0
3 years ago
What is the domain in interval notation?
Sonbull [250]

Answer:

The answers are all real numbers where x<2 or x>2. We can use a symbol known as the union, ∪,to combine the two sets. In interval notation, we write the solution:(−∞,2)∪(2,∞). In interval form, the domain of f is (−∞,2)∪(2,∞).

8 0
3 years ago
Other questions:
  • What does the line 5x+2y=8 look like?
    14·1 answer
  • Can you help me find the slope! (30 points)
    11·2 answers
  • What are the coordinates of the terminal point corresponding to = –120? Use the Pythagorean theorem to prove that this point lie
    5·1 answer
  • suppose a marble is chosen randomly from a bag containing 3 blue, 2 red, and 5 green marbles. Determine each theoretical probabi
    15·1 answer
  • The measure of an angle is 63.7°. What is the measure of its supplementary angle?
    12·1 answer
  • Hey can you please help me posted picture of question
    12·2 answers
  • 3x+2y=5 , solve for y<br><br> Please help I don't understand
    11·2 answers
  • When
    8·2 answers
  • R + 8 &gt; 21 what is the answer
    13·1 answer
  • Please help me identify the terms and like terms
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!