The distance you free-fall from rest is D = (1/2) (g) (T²) <== memorize this
Height of the platform = (1/2) (9.8 m/s²) (2.4 sec)²
Height = (4.9 m/s²) (5.76 s²)
Height = (4.9/5.76) meters
Height = 28.2 meters (a VERY high platform ... about 93 ft off the water !)
Without air-resistance, your horizontal speed doesn't change. It's constant. Traveling 3.1 m/s for 2.4 sec, you cover (3.1 m/s x 2/4 s) = 7.4 m horizontally.
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN
Answer:
Resistance, 
Explanation:
Given that,
Voltage of the battery, V = 9 volts
Current produced in the circuit, I = 17 A
We need to find the resistance when shorted by a wire of negligible resistance. It is a case of Ohm's law. The voltage is given by :




So, the resistance in the circuit is 0.529 ohms. Hence, this is the required solution.
Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4