1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
2 years ago
7

The data table below shows the distribution of the energies of a pendulum 0.60 s into its motion. What is the missing value?

Physics
1 answer:
ohaa [14]2 years ago
4 0
The total energy (also called mechanical energy) is the sum of the kinetic energy and potential energy:
TE = KE + PE
For this pendulum, we see that at t=0.60 s the total energy is TE=0.918 J while the potential energy is 0.054 J, so the kinetic energy (the missing value in the table) is
KE=TE-PE=0.918 J - 0.054 J =0.864 J
You might be interested in
Consider the train car described in the previous part. Another experiment is conducted in it: A net force of 20N is applied to a
nordsb [41]

Answer:

No

Explanation:

The supplied information about the object and train is incomplete. Acceleration is the rate at which the velocity of a body changes with time. Here the velocity and time is not given

7 0
3 years ago
Power is the rate at which...........is done or the rate at which........... is converted from one form to another .
34kurt

Answer:

the answer is c I thought

8 0
2 years ago
Find its moment of inertia about an axis perpendicular to its plane and passing through the midpoint of the line connecting its
antoniya [11.8K]

A) Moment of inertia about an axis passing through the point where the two segments meet : $I_A=\frac{1}{12} M L^2$

B) Moment of inertia passing through the point where the midpoint of the line connects to its two ends: $I x=\frac{1}{3} M L^2$

What is Moment of inertia?

The term "moment of inertia" refers to a physical quantity that quantifies a body's resistance to having its speed of rotation along an axis changed by the application of a torque (turning force). The axis might be internal or exterior, fixed or not.

A) The moment of inertia about an axis passing through the point where the two segments meet is $I_A=\frac{1}{12} M L^2$given that the rod is bent at the center and distance from all the points to the axis remains the same, the moment of inertia about the center will remain the same.

B) Determine the moment of inertia about an axis passing through the point midpoint of the line which connects the two ends

First step: determine the distance between the ends ( d )

After applying Pythagoras theorem$\mathrm{d}=\frac{\sqrt{2}}{2} L$

Next step : determine distance between the two axis $(\mathrm{x})$

After applying Pythagoras theorem

\mathrm{x}=\frac{\sqrt{2}}{4} L$$

Final step : Calculate the value of $\mathrm{I}_{\mathrm{x}}$

applying Parallel Axis Theorem

$$I_x=I_8+M x^2$$

$$\begin{aligned}& =\frac{1}{12} M L^2+\frac{1}{4} M L^2 \\& \therefore \quad I x=\frac{1}{3} M L^2 \\&\end{aligned}$$

Hence we can conclude that Moment of inertia about an axis passing through the point where the two segments meet: $I_A=\frac{1}{12} M L^2$, Moment of inertia passing through the point where the midpoint of the line connects its two ends: $I x=\frac{1}{3} M L^2$

To learn more about moment of inertia visit:brainly.com/question/15246709

#SPJ4

5 0
1 year ago
Two children are pulling on opposite sides of a blanket. The brother is pulling with a force of 3 N. The sister is pulling with
Citrus2011 [14]
Let F1=Force exerted by the brother (+F1)
F1= Force exerted by the sister (-F2)

Fnet=(+F1) + (-F2)
Fnet= (+F1) + (-F2)
Fnet=F1 - F2
Fnet= (+3N)+(-5N)
Fnet= -2N

-F

towards the sister (-F) (greater force applied)
7 0
2 years ago
A physics student skis down a hill, accelerating at a constant
ikadub [295]
<h3>Answer:</h3>

225 meters

<h3>Explanation:</h3>

Acceleration is the rate of change in velocity of an object in motion.

In our case we are given;

Acceleration, a = 2.0 m/s²

Time, t = 15 s

We are required to find the length of the slope;

Assuming the student started at rest, then the initial velocity, V₀ is Zero.

<h3>Step 1: Calculate the final velocity, Vf</h3>

Using the equation of linear motion;

Vf = V₀ + at

Therefore;

Vf = 0 + (2 × 15)

    = 30 m/s

Thus, the final velocity of the student is 30 m/s

<h3>Step 2: Calculate the length (displacement) of the slope </h3>

Using the other equation of linear motion;

S = 0.5 at + V₀t

We can calculate the length, S of the slope

That is;

S = (0.5 × 2 × 15² ) - (0 × 15)

= 225 m

Therefore, the length of the slope is 225 m

6 0
3 years ago
Other questions:
  • The ultracentrifuge is an important tool for separating and analyzing proteins. Because of the enormous centripetal acceleration
    10·1 answer
  • A volume of cool air rapidly descends from the top of a mountain. the air is a poor thermal conductor, but its temperature incre
    11·1 answer
  • The stored energy an object has due to its position is potential energy. True or False?
    10·2 answers
  • A ballistic pendulum is a device for measuring bullet speeds. One of the simplest versions consists of a block of wood hanging f
    11·1 answer
  • What is a common environmental problem caused by mining
    13·2 answers
  • What event is often considered the point where psychology split from philosophy?
    13·1 answer
  • When the mass of one object doubles what happens to its gravitational attraction to another object of constant mass, assuming th
    15·1 answer
  • How do furnace heating systems typically work?
    14·1 answer
  • A boy throws a stone vertically in the air with an initial speed of 40m/sec.At the instant the stone is thrown,a monkey at the t
    12·1 answer
  • We can only tell the earth is rotating almost 960 miles an hour if we
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!