Answer
given,
initial speed of merry-go-round = 0 rad/s
final speed of merry-go-round = 1.5 rad/s
time = 7 s
Radius of the disk = 6 m
Mass of the merry-go-round = 25000 Kg
Moment of inertia of the disk


I = 450000 kg.m²
angular acceleration



we know,



Answer:
it's A
Explanation:
wen aligning the vectors the head and the tail should meet
Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Answer:
0.125 cm
Explanation:
1/f = 1/d¡ + 1/d。
Find the focal point
(13.0^-1 + 20.8^-1) = 0.125 m
Focal point = 0.125 m