Answer is: because alkaline metals (group IA metals) are the strongest reducing agents and most reactive metals.
Reducing agent<span> is an element or compound that loses an </span>electron<span> to another </span>chemical species<span> in a </span>redox <span>chemical reaction and they have been oxidized.
Alkaline metals tend to lose only one electron in redox reaction.</span>
In my opinion yes, as of now, almost anyone could get there hands on lets say an explosive. Have you heard of dynamite fishing? It is illegal, but it is still done once people have access to dynamite, then what ends up happening not only do marine wildlife get killed but it pollutes the water and lessens the chance of the natural cycle of life. Also there are several other factors, firstly, what will you do with an explosive once you get your hands on it? Perhaps you could just use an explosive for fun/personal entertainment...that isn't right and it could harm people. So, to conclude the harder it is for people to access explosives or even acclerants the better...and to add this can be possible by making people get like some sort of licence to use them, and let them be trained in certain conditions so that there is no regrets once they have access to them. I know my idea sounds far fetched but its a thought!
NH3 +HCl ----> NH4Cl
moles of HCl used = (0.8 x 17.4) /1000= 0.0139 moles
by use of reacting ratio between HCl to NH4Cl which is 1:1 therefore the moles of NH4Cl is also = 0.0139 moles
molar concentration = moles /volume in liters
molar concentration is therefore= (0.0139/5) x1000 = 2.7 M
Given the percentage composition of HC as C → 81.82 % and H → 18.18 %
So the ratio of number if atoms of C and H in its molecule can will be:
C : H = 81.82 12 : 18.18 1 C : H = 6.82 : 18.18 = 6.82 6.82 : 18.18 6.82 = 1 : 2.66 ≈ 3 : 8
So the Empirical Formula of hydrocarbon is:
C 3 H 8
As the mass of one litre of hydrocarbon is same as that of C O 2 The molar mass of the HC will be same as that of C O 2 i.e 44 g mol
Now let Molecular formula of the HC be ( C 3 H 8 ) n
Using molar mass of C and H the molar mass of the HC from its molecular formula is:
( 3 × 12 + 8 × 1 ) n = 44 n So 44 n = 44 ⇒ n = 1
Hence the molecular formula of HC is C 3 H 8
Does that help?
Answer:heat-,7
Explanation:According to table P, heat- is an organic prefix used to represent 7 carbon atoms