Consider you have a mixture of amino acids(contains all set of amino acids such as polar, non polar). Other than TLC, how are you supposed to separate a single amino acid from the mixture without loss of amino acid quantitatively.
The mole fraction is calculated using the formula:
mole fraction of component A = # of moles of component A / # of total moles of the solution.
A) number of moles of ethanol
To calculate the number of moles of ethanol, you need its density, which will permit you to determine the mass of the 10.00 ml, and then convert into moles using the molar mass of ethanol.
The normal density of ethanol is 0.789 g/ml
density = mass / volume => mass = density * volume = 0.789 g/ml * 10.00 ml = 7.890 g
Molar mass of ethanol = 46.07 g/mol
number of moles = mass / molar mass = 7.890g / 46.07 g/mol = 0.1713 mol
B) number of moles of water
density of water = 1.00 g/mol
mass of water = density * volume = 1.00 g/mol * 2.00 ml = 2.00 g
number of moles of water = mass / molar mass = 2.00 g / 18.0 g/mol = 0.111 mol
C) mole fraction
mole fraction of ethanol = number of moles of ethanol / number of moles of solution
number of moles of ethanol = 0.1713 / (0.1713 + 0.111) = 0.1713 / 0.2824 = 0.607
Answer: 0.607
The volume of the final solution may be calculated by adding the volume of the two components. This is 10.00 ml of ethanol + 2.00 ml of water makes 12.00 ml of solution.
It is not clear what the second question is meant for. Some context is missing. If you know density and you know maqss (or can calculate the mass from other data) you do not need to measure the volume.
Answer:
Explanation:
In S₈ , there are 8 single bonds which breaks up first . Energy absorbed
= 8 x 240 = 1920 kJ
In S₈ four double bonds of S₂ are formed . Let bond energy be x . In this process energy will be released . energy released in four S₂ molecules formed = 4 x
Given
1920 + 4x = 239
4x = 239 - 1920
x = - 420.25 kJ .
So bond energy of S₂ = 420.25 kJ .