<span>A chemist adds 155.0ml of a 4.10 X 10^-5 mmol/L of a zinc oxalate (ZnC2O4)solution to a reaction flask. Calculate the mass in micrograms of zinc oxalate the chemist has added to the flask.
1mmol = 10^-3 mol
Therefore 4.10*10^-5mmol = 4.10*10^-8mol
molar mass ZnC2O4 = 65.39+(2*12.011)+(4*15.99) = 153.372g/mol
You have 4.10*10^-8 mol/litre =153.372 * 4.10*10^-8 = 6.29*10^-6 grams / litre (* see below)
But you have 155ml. Mass of ZnC2O4 = 155/1000*6.29*10^-6 g
Mass is = 9.75*10^-7 grams
1µg = 10^-6 g
You then have 9.75*10^-7/10^-6 = 0.975µg ZnC2O4
(*see below) at this point you could have said:
1µg = 10^-6 g therefore you have a solution of 6.29µg per litre,
155ml = 6.29*155/1000 = 0.975µg ZnC2O4</span>
Answer:
Total pressure 5.875 atm
Explanation:
The equation for above decomposition is

rate constant 
Half life 
Initial pressure 
Pressure after 3572 min = P
According to first order kinematics


solving for P we get
P = 2.35 atm

initial 4.70 0 0
change -2x +2x +x
final 4.70 -2x 2x x
pressure of
after first half life = 2.35 = 4.70 - 2x
x = 1.175
pressure of
after first half life = 2x = 2(1.175) = 2.35 ATM
Total pressure = 2.35 + 2.35 + 1.175
= 5.875 atm
Answer:
Benzene is a combination of carbon and hydrogen atoms. The hybridization is sp2 type. During the hybridization of benzene, each carbon atom forms different bonds with two other similar carbon atoms instead of just one.
hope it helps!
please mark as the brainliest!
Answer:
Explanation: Nuclear fusion
Energy levels inside an are the specific that electrons can have when occupying specific orbitals. Electrons can be excited to higher by absorbing from the surroundings. Light is emitted when an electron relaxes from a high state to a lower one.