Answer:
...................................................
Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Answer:
the conversion factor is f= 6 mol of glucose/ mol of CO2
Explanation:
First we need to balance the equation:
C6H12O6(s) + O2(g) → CO2(g) + H2O(l) (unbalanced)
C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(l) (balanced)
the conversion factor that allows to calculate the number of moles of CO2 based on moles of glucose is:
f = stoichiometric coefficient of CO2 in balanced reaction / stoichiometric coefficient of glucose in balanced reaction
f = 6 moles of CO2 / 1 mol of glucose = 6 mol of glucose/ mol of CO2
f = 6 mol of CO2/ mol of glucose
for example, for 2 moles of glucose the number of moles of CO2 produced are
n CO2 = f * n gluc = 6 moles of CO2/mol of glucose * 2 moles of glucose= 12 moles of CO2
Group 18 is the only group in periodic table in which all the elements are nonmetals. This group contains F, Cl, Br, I and At and also the other name of this group is halogen which means salt producer.
You welcome and please give me brainiest!