Steam enters a cylinder—- A
Answer:
The magnitude of the charge on each sphere is 0.135 μC
Explanation:
Given that,
Mass = 1.0
Distance = 2.0 cm
Acceleration = 414 m/s²
We need to calculate the magnitude of charge
Using newton's second law


Put the value of F

Put the value into the formula





Hence, The magnitude of the charge on each sphere is 0.135μC.
The change in temperature here corresponds to a sensible heat. The amount of energy required can be calculated by multiplying the specific heat capacity, the amount of the substance and the corresponding change in temperature.
Heat required = mCΔT
Heat required = 0.368 kg (0.0920 cal/g°C) (60 - 23)°C
Heat required = 1.25 cal
The statement that is true regarding a distance vs. time graph is option A: The graph should show distance on the vertical axis.
<h3>Where is the plot of distance?</h3>
How far an object has come in a certain amount of time is displayed on a distance-time graph. Time is represented on the X-axis and Distance is plotted on the Y-axis (left) (bottom).
On a distance-time graph, an object's motion is indicated by a sloping line. The slope or gradient of the line in a distance-time graph is equal to the object's speed. The object is travelling more quickly the steeper the line is (and the bigger the gradient).
Note that the distance-time graph shows the relationship between distance and time by plotting distance on the y-axis and time on the x-axis.
Learn more about distance vs. time graph from
brainly.com/question/16825120
#SPJ1
Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²