I was hoping that some choices would be given to choose from. As there are no choices given, so i am answering the question based on my knowledge and hope that it comes to your help. Calcium hydroxide is a good example of Arrhenius base. An Arrhenius base is actually a substance that releases a hydroxyl ion in water.
Answer:
531.6g
Explanation:
Total moles of glucose in this case is: 886/180= 4.922 (mole)
For every 1 mole glucose we get 6 mole water
-> Mole of water is: 4.922 * 6= 29.533 (mole)
weight of water is 18. Therefore, total weight of water that we will have from 886g of glucose are: 25.933*18= 531.6g
Answer:
The final dilution is 1:400
Explanation:
Let's analyze what we are told: we have an initial 1:5 dilution of protein lysate. This means that the initial solution (stock solution) was diluted 5 times. Then, from this dilution the student prepared another dilution taking 2 mL of the first dilution in 8 mL of water. This is the same as saying we took 1 mL of first dilution in 4 mL of water (the ratio is the same), so we now have a second 1:4 dilution of the first dilution (1:5). Finally, the student made a third 1:20 dilution, this means that the second dilution was further diluted 20 times.
So, to calculate the final dilution of protein lysate, we have to multiply all the dilution factors of every dilution prepared: in this case we have a final dilution of 1:20, this means we have a factor dilution of 20. But it was previously diluted 4 times, so we have a factor dilution of 20×4 = 80. However, this dilution was also previously diluted 5 times, so the new dilution factor is 80 × 5 = 400
This means that the final dilution of the compound was diluted a total of 400 times compared to the initial concentration of stock solution.