Answer:
27%
Explanation:
15.999 divided by 58.32 = .27433128
Move the decimal place over 2 places.
27%
Electromagnetic would be the weakest interaction of nature.
When light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
To find the answer, we have to know about the rules followed by drawing ray-diagram.
<h3>What are the rules obeyed by light rays?</h3>
- If the incident ray is parallel to the principal axis, the refracted ray will pass through the opposite side's focus.
- The refracted ray becomes parallel to the major axis if the incident ray passes through the focus.
- The refracted ray follows the same path if the incident light passes through the center of the curve.
Thus, we can conclude that, when light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
Learn more about refraction by a lens here:
brainly.com/question/13095658
#SPJ1
Answer:, , 8.2 . 10^-6, ATTRACTIVE
Explanation:
The magnitude of the electrostatic force between two charges is given by Coulomb's law
Answer:
The current in the second loop will stay constant
Explanation:
Since the induced emf in the second coil, ε due to the changing current i₁ in the first wire loop ε = -Mdi₁/dt where M = mutual inductance of the coils and di₁/dt = rate of change of current in the first coil = + 1 A/s (positive since it is clockwise)
Now ε = i₂R where i₂ = current in second wire loop and R = resistance of second wire loop.
So, i₂R = -Mdi₁/dt
i₂ = -Mdi₁/dt/R
Since di₁/dt = + 1 A/s,
i₂ = -Mdi₁/dt/R
i₂ = -M × + 1 A/s/R
i₂ = -M/R
Since M and R are constant, this implies that i₂ = constant
<u>So, the current in the second wire loop will stay constant.</u>