Answer:
Magnetic force is equal to 
Explanation:
We have given electron is accelerated with a potential difference of 81700 volt.
Magnetic field B = 0.508 T
Angle between magnetic field and velocity 
Mass of electron 
Charge on electron 
By energy conservation.



Magnetic force on electron



Answer:
Option-C (Lipoprotein profile)
Answer:
allow the downward movement of the concentration gradient by passive transport
Explanation:
Passive transport is a process of substance transport, which is carried out spontaneously, without energy expenditure and in favor of the concentration gradient, that is, from a medium where the molecules are more concentrated towards a medium where their concentration is lower.
Three types of passive transport are distinguished: osmosis, simple diffusion and facilitated diffusion
<u>Simple diffusion</u>
It is the passage, through the plasma membrane, of small molecules without charge soluble in the lipid bilayer, such as some gases (oxygen and carbon dioxide). For a molecule to diffuse through the membrane it is necessary that there is a difference in concentration between the external and the internal environment.
<u>Diffusion facilitated
</u>
There are molecules such as amino acids, glucose and small ions that, due to their chemical and size characteristics, cannot diffuse through the lipid bilayer and require transport proteins for diffusion.
The transport proteins are immersed in the plasma membrane and can be of two types: protein channels, formed by proteins that generate a channel in the membrane, and permeases, which are proteins that, when joined to the molecule to be transported, change their shape by carrying them into the cell.
The block with the bullet lodged in the block is now travelling at 2.133 m/s.
<h3>What is momentum conservation principle?</h3>
When there is no external force acting on the system, the momentum remains conserved.
For inelastic collision, after collision both objects travel with common speed.
m1u1 + m2u2 =(m1 +m2)v
Substitute initial velocity of bullet u1 =320 m/s , initial velocity of block u2 =0, mass of bullet m1 = 0.1 kg and mass of block m2 = 14.9 kg.
Solve for the final velocity of bullet,
0.1 x 320 + 14.9 x 0 = (0.1 +14.9) x v
v = 2.133 m/s
Thus, the block with the bullet lodged in block now travelling at 2.133 m/s.
Learn more about momentum conservation principle.
brainly.com/question/14033058
#SPJ1