Answer:
t₀ = 1.55 s
Explanation:
According to Einstein's Theory of Relativity, when an object moves with a speed comparable to speed of light, the time interval measured for the event, by an observer in motion relative to the event is not the same as measured by an observer at rest.
It is given as:
t = t₀/[√(1 - v²/c²)]
where,
t = time measured by astronaut in motion = 3.1 s
t₀ = time required according to observer on earth = ?
v = relative velocity = 0.87 c
c = speed of light
3.1 s = t₀/[√(1 - 0.87²c²/c²)]
(3.1 s)(0.5) = t₀
<u>t₀ = 1.55 s</u>
Answer:
C
Explanation:
why because if something is conserved, it is constant, and does not change with time. A moving body may change its position, acceleration, and velocity with time, but it's energy is constant. The conversation of energy law states that: In any closed system (isolated system) the total energy of the system remain constant.
Mathematically it is written as

I believe its newtons 3rd law for every action there is an equal but opposite reaction since the squid is moving foward by shooting the water its pushing the squid back as its reaction. Hope this helped !