The actual weight of the gas = apparent weight + weight.
The actual weight =
+ W
Given that a plastic bag is massed. It is then filled with a gas which is insoluble in water and massed again.
If the apparent weight of the gas is the difference between these two masses, then let the apparent weight = 
The gas is squeezed out of the bag to determine its volume by the displacement of water. Since
density = mass / volume
The density of water is 1000 kg/
we can get the mass of the gas by making m the subject of the formula.
W = mg
The actual weight of the gas = apparent weight + weight
That is,
The actual weight =
+ W
Learn more about density here: brainly.com/question/406690
Answer:
The child represented by a star on the outside path.
Explanation:
True since coulomb's law states that There is electric force between like charges or opposite charges. The negative sign only shows the nature of the force.
<h3>What is the coulombs law ?</h3>
coulombs formula is given by

Now it states that if two charged particles are separated by the distance r and having same or opposite charge will attract or repel each other.
The intensity of the force depend upon the distance and the nature of the charge.
Hence coulomb's law states that There is electric force between like charges or opposite charges. The negative sign only shows the nature of the force.
To know more about coulomb's law follow
https://brainly.in/question/332179
I think it’s d but I’m not sure
Answer:
Part a: When the road is level, the minimum stopping sight distance is 563.36 ft.
Part b: When the road has a maximum grade of 4%, the minimum stopping sight distance is 528.19 ft.
Explanation:
Part a
When Road is Level
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is this case is 0 as the road is level
Substituting values

So the minimum stopping sight distance is 563.36 ft.
Part b
When Road has a maximum grade of 4%
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is given as 4% now this can be either downgrade or upgrade
For upgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% upgrade is 528.19 ft.</em>
For downgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% downgrade is 607.59 ft.</em>
As the minimum distance is required for the 4% grade road, so the solution is 528.19 ft.