Answer:
10.16 degrees
Explanation:
Apply Snells Law for both wavelenghts
\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)
For red
(1.620)(sin 25.5) = (1)(sin r)
For red, the angle is 35.45degrees
For violet
(1.660)(sin 25.5) = (1)(sin v)
For violet, the angle is 45.6 degrees
The difference is 45.6- 35.45 = 10.16 degrees
Answer:
c
Explanation:
cuz its informing the length of 5 and weight on 20N
Answer: I am pretty sure that you should pick radio waves.
Explanation: The scientist should use radio waves. I think this because you can use the radio waves to analyze the signals from outer space. This will work much better than anything there, to analyze it the best possible.
The best I could do.
Answer:
Because of the speed of the sound.
Explanation:
The first thing that happens in such cases is to take into account the speed of the sound. First, we see that the player hits the ball with the bat, if we are in the stands far enough we will hear the sound of the batting time later, this time depends on the speed of the sound which is equal to 345 [m/s].
Another visible and practical example is a fireworks display, where people nearby immediately hear the explosion. while those at a great distance will be able to see first the explosion followed by the sound.
With the following equation, we can calculate how long it takes to hear a hit or explosion
t = x / v
where:
x = distance [m]
v = sound velocity = 345 [m/s]
t = time [s]
Answer:
The answer is "
"
Explanation:
Using the law of conservation for energy. Equating the kinetic energy to the potential energy.
Calculating the closest distance:

