<span>Car B has a greater momentum than car A.
Since, momentum = mass * velocity
mass of both car A and B is same, velocity of B is greater than A.
So, momentum of car B = 1200 * 25 = 30,000 kg-km/h is greater than </span>momentum of car A = 1200 * 22 = 26400 kg-km/h
Answer:
cola forms so slowly that we could use up the supply that exists now
Answer:
Incomplete question. Complete question is: An electric drill starts from rest and rotates with a constant angular acceleration. After the drill has rotated through a certain angle, the magnitude of the centripetal acceleration of a point on the drill is twice the magnitude of the tangential acceleration. Determine the angle through which the drill rotates by this point.
The answer is : Δ θ = 1 rad
Explanation:
Ok, so the condition involves the centripetal acceleration and the tangential acceleration, so let’s start by writing expressions for each:
Ac= centripetal acceleration At= tangential acceleration
Ac = V² / r At = r α
Because we have to determine the angle ultimately, therefore we should convert the linear velocity into angular velocity in the expression for centripetal acceleration
V = r ω
Ac = (r ω)² / r = r² ω² / r
Ac = r ω²
now that we have expressions for the centripetal and tangential acceleration, we can write an equation that expresses the condition given: The magnitude of the centripetal acceleration is twice the magnitude of the tangential acceleration.
Ac = 2 At
That is,
r ω² = 2 r α
it is equivalent to;
ω² = 2 α
now we have the relation between angular speed and angular acceleration, but we also need to determine the angular displacement as well. Therefore choose a kinematics equation that doesn’t involve time because time is not mentioned in the question. Thus,
ω² – ω°² = 2 α Δ θ
such that ω° = 0
and ω² = 2 α
therefore;
2 α - 0 = 2 α Δ θ
2 α = 2 α Δ θ
So the angle will be : Δ θ = 1 rad
Answer:
-1.03 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S. I unit of acceleration is m/s².
Mathematically, acceleration is expressed as
a = (v-u)/t ........................ Equation 1
Where a = acceleration, v = final velocity, u = initial velocity, t = time.
Given: u = 13.60 m/s, v = 7.20 m/s t = 6.2 s.
Substituting into equation 2
a = (7.20-13.60)/6.2
a = -6.4/6.2
a = -1.03 m/s²
Note: a is negative because, the hockey puck is decelerating.
Hence the average acceleration = -1.03 m/s²
Answer:
longitudinal and transverse.
Explanation:
plzzzzzzz Mark my answer in brainlist