A- water. It’s the only one that isn’t a gas
False, our tongue and nose work together
Answer:
Binary compound
Explanation:
Binary compounds:
The compounds which are made up of the atoms of only two elements are called binary compounds.
For example:
The following compounds are binary:
HCl
H₂O
NH₃
HCl is binary because it is composed of only hydrogen and chlorine. Ammonia is also binary compound because it is made up of only two elements nitrogen and hydrogen.
water is also binary because it is also made up of only two elements hydrogen and oxygen.
SF₆ is binary compound because it consist of atoms of only two elements i.e, sulfur and fluorine.
<span>1 trial : you have nothing to compare the result with - you don't know if it's a mistake.
2 trials : you can compare results - if very different, one may have gone wrong, but which one?
3 trials : if 2 results are close and 3rd far away, 3rd probably unreliable and can be rejected.
******************************
First calculate the enthalpy of fusion. M, C and m,c = mass and
specific heat of calorimeter and water; n, L = mass and heat of fusion
of ice; T = temperature fall.
L = (mc+MC)T/n.
c=4.18 J/gK. I assume calorimeter was copper, so C=0.385 J/gK.
1. M = 409g, m = 45g. T = 22c, n = 14g
L = (45*4.18+409*0.385)*22/14 = 543.0 J/g.
2. M = 409g, m = 49g, T = 20c, n = 13g
L = (49*4.18+409*0.385)*20/13 = 557.4 J/g.
3. M = 409g, m = 54g, T = 20c, n = 14g
L = (54*4.18+409*0.385)*20/14 = 547.4 J/g.
(i) Estimate error in L from spread of 3 results.
Average L = 549.3 J/g.
average of squared differences (variance) = (6.236^2+8.095^2+1.859^2)/3 = 35.96
standard deviation = 5.9964
standard error = SD/(N-1) = 5.9964/2 = 3 J/g approx.
% error = 3/547 x 100% = 0.5%.
(ii) Estimate error in L from accuracy of measurements:
error in masses = +/-0.5g
error in T = +/-0.5c
For Trial 3
M = 409g, error = 0.5g
m = 463-409, error = sqrt(0.5^2+0.5^2) = 0.5*sqrt(2)
n =(516-463)-(448-409)=14, error = 0.5*sqrt(4) = 1.0g
K = (mc+MC)=383, error = sqrt[2*(0.5*4.18)^2+(0.5*0.385)^2] = 2.962
L = K*T/n
% errors are
K: 3/383 x 100% = 0.77
T: 0.5/20 x 100% = 2.5
n: 1.0/14 x 100% = 7.14
% errors in K and T are << error in n, so we can ignore them.
% error in L = same as in n = 7% x 547.4 = 40 (always round final error to 1 sig fig).
*************************************
The result is (i) L= 549 +/- 3 J/g or (ii) L = 550 +/- 40 J/g.
Both are very far above accepted figure of 334 J/g, so there is at least
one systematic error in the experiment or the calculations.
eg calorimeter may not be copper, so C is not 0.385 J/gK. (If it was
polystyrene, which absorbs/ transmits little heat, the effective value
of C would be very low, reducing L.)
Using +/- 40 is probably best (more cautious).
However, the spread in the actual results is much smaller; try to explain this discrepancy - eg
* measurements were "fiddled" to get better results; other Trials were made but only best 3 were chosen.
* measurements were more accurate than I assumed (eg masses to nearest 0.1g but rounded to 1g when written down).
Other sources of error:
L=(mc+MC)T/n is too high, so n (ice melted) may be too small, or T (temp fall) too high - why?
* it is suspicious that all final temperatures were 0c - was this
actually measured or just guessed? a higher final temp would reduce L.
* we have assumed initial and final temperature of ice was 0c, it may
actually have been colder, so less ice would melt - this could explain
small values of n
* some water might have been left in container when unmelted ice was
weighed (eg clinging to ice) - again this could explain small n;
* poor insulation - heat gained from surroundings, melting more ice,
increasing n - but this would reduce measured L below 334 J/g not
increase it.
* calorimeter still cold from last trial when next one started, not
given time to reach same temperature as water - this would reduce n.
Hope This Helps :)
</span>
<span>Answer: option B. 3.07 g
Explanation:
1) given reaction:
S(s) + O₂ (g) → SO(g)
2) Balanced chemical equation:
</span><span>2S(s) + O₂ (g) → 2SO(g)
3) Theoretical mole ratios:
2 mol S : 1 mol O₂ : 2 mol SO
3) number of moles of 4.5 liter SO₂ at</span><span> 300°C and 101 kPa
use the ideal gas equation:
pV = nRT
with V = 4.5 liter
p = 101 kPa
T = 300 + 273.15 K = 573.15 K
R = 8.314 liter×kPa / (mol×K)
=> n = pV / (RT) =
n = [101 kPa × 4.5 liter] / [8.314 (liter×kPa) / (mol×K) × 573.15 K ]
n = 0.0954 mol SO
4) proportion with the theoretical ratio S / SO
2 mol S x
-------------- = ----------------------
2 mol SO 0.0954 mol SO
=> x = 0.0954 mol S.
5) Convert mol of S to grams by using atomic mass of S = 32.065 g/mol
mass = number of moles × atomic mass
mass = 0.0954 mol × 32.065 g/mol = 3.059 g of S
6) Therefore the answer is the option B. 3.07 g
</span>