To determine mass of the given number of atoms of mercury, we need a factor that would relate the number of atoms to number of moles. In this case, we use the Avogadro's number. It is a <span>number that represents the
number of units in one mole of any substance. This has the value of 6.022 x
10^23 units / mole. The number of units could be atoms, molecules, ions or electrons. To convert into mass, we use the given amu of mercury since it is equal to grams per mole. We calculate as follows:
</span>3.0 x 10^10 atoms ( 1 mol / 6.022 x 10^23 atoms ) ( 200.59 g / 1 mol ) = 9.99x10^-12 g Hg
The statements in accordance with the law of conservation of charge are:
A. The total charge of the reactants and products must be equal
B. The net charge of an isolated system remains constant
Both of these statements follow the law of conservation of charge which states that charge may neither be created nor destroyed, due to which the total charge in an isolated system (one in which charge can not move in or out of) remains constant.
Answer:
The chemical characteristics of carbon affect the characteristics of organic molecules due to its tetravalent nature. It has four valence electrons in which it shares with other elements in order to form an octet configuration.
Carbon atoms are also capable of forming double and triple bonds with other atoms. These properties help determine the functional group present and gives us a knowledge of the chemical features such as polarity, melting and boiling present in the compound.