1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
6

How would you feel if everyone hated you?

Physics
2 answers:
crimeas [40]3 years ago
8 0

Answer:

awful

Explanation:

can you help me with my question Which of the themes of Hawthorne's "Dr. Heidegger's Experiment" is illustrated by this passage? Paragraph 36: The most singular effect of their gayety was an impulse to mock the infirmity and decrepitude of which they had so lately been the victims. A. Gayety produces an impulse to mock. B. It is a great release to look back on our problems happily C It is human nature to mock or make light of problems we have been delivered from

Advocard [28]3 years ago
5 0
Really sad try not to let it get to you
You might be interested in
A loop circuit has a resistance of R1 and a current of 1.9 A. The current is reduced to 1.5 A when an additional 3.1 Ω resistor
Deffense [45]

Answer:

11.625 Ohm

Explanation:

Let V be the Voltage charge of the loop, as this is constant we know that before the resistor addition the current I is:

V/R1 = 1.9 or V = 1.9R1

After the resistor addition to series R = R1 + 3.1

I = V/R = V/(R1 + 3.1) = 1.5

We can substitute V = 1.9R1

1.9R1 = 1.5R1 + 1.5*3.1

0.4R1 = 4.65

R1 = 4.65/0.4 = 11.625 Ohm

4 0
4 years ago
A 54 kg man holding a 0.65 kg ball stands on a frozen pond next to a wall. He throws the ball at the wall with a speed of 12.1 m
Inessa [10]

Answer:

The velocity of the man is 0.144 m/s

Explanation:

This is a case of conservation of momentum.

The momentum of the moving ball before it was caught must equal the momentum of the man and the ball after he catches the ball.

Mass of ball = 0.65 kg

Mass of the man = 54 kg

Velocity of the ball = 12.1 m/s

Before collision, momentum of the ball = mass x velocity

= 0.65 x 12.1 = 7.865 kg-m/s

After collision the momentum of the man and ball system is

(0.65 + 54)Vf = 54.65Vf

Where Vf is their final common velocity.

Equating the initial and final momentum,

7.865 = 54.65Vf

Vf = 7.865/54.65 = 0.144 m/s

4 0
3 years ago
A snowball is rolling down a hill at 4.5 m/s and accumulating snow as it goes. Its diameter begins at 0.50 m and ends at the bot
Reil [10]
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.

The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r

where:
v = velocity, m/s
r= radium, m

assuming the velocity does not change:

at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
                                      = 81 m/s^2

at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
                                      = 16.2 m/s^2

to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill

= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
6 0
4 years ago
Charge q1 = +2.00 μC is at -0.500 m along the x axis. Charge q2 = -2.00 μC is at 0.500 m along the x axis. Charge q3 = 2.00 μC i
Kobotan [32]

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons.

<h3>How to calculate the electrical force experimented on a particle</h3>

The vector <em>position</em> of each particle respect to origin are described below:

\vec r_{1} = (-0.500, 0)\,[m]

\vec r_{2} = (+0.500, 0)\,[m]

\vec r_{3} = (0, +0.500)\,[m]

Then, distances of the former two particles particles respect to the latter one are found now:

\vec r_{13} = (+0.500, +0.500)\,[m]

r_{13} = \sqrt{\vec r_{13}\,\bullet\,\vec r_{13}} = \sqrt{(0.500\,m)^{2}+(0.500\,m)^{2}}

r_{13} =\frac{\sqrt{2}}{2}\,m

\vec r_{23} = (-0.500, +0.500)\,[m]

r_{23} = \sqrt{\vec r_{23}\,\bullet \,\vec r_{23}} = \sqrt{(-0.500\,m)^{2}+(0.500\,m)^{2}}

r_{23} =\frac{\sqrt{2}}{2}\,m

The resultant force is found by Coulomb's law and principle of superposition:

\vec R = \vec F_{13}+\vec F_{23} (1)

Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.

\vec R = \frac{k\cdot q_{1}\cdot q_{3}}{r_{13}^{2}}\cdot \vec u_{13}  +\frac{k\cdot q_{2}\cdot q_{3}}{r_{23}^{2}}\cdot \vec u_{23} (2)

Where:

  • k - Electrostatic constant, in newton-square meters per square Coulomb.
  • q_{1}, q_{2}, q_{3} - Electric charges, in Coulombs.
  • r_{13}, r_{23} - Distances between particles, in meters.
  • \vec u_{13}, \vec u_{23} - Unit vectors, no unit.

If we know that k = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, q_{1} = 2\times 10^{-6}\,C, q_{2} = 2\times 10^{-6}\,C, q_{3} = 2\times 10^{-6}\,C, r_{13} =\frac{\sqrt{2}}{2}\,m, r_{23} =\frac{\sqrt{2}}{2}\,m, \vec u_{13} = \left(-\frac{\sqrt{2}}{2}, - \frac{\sqrt{2}}{2}  \right) and \vec u_{23} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right), then the vector force on charge q_{3} is:

\vec R = \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)

\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)\,[N]

\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]

And the magnitude of the <em>electrical</em> force on charge q_{3} (R), in newtons, due to the others is found by Pythagorean theorem:

R = 0.102\,N

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons. \blacksquare

To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926

8 0
2 years ago
frictional force acting on a 0.5 kg object and a floor is 3 N. What is the coefficient of friction between the object and the fl
ikadub [295]

Answer:

μ  = 0.6

Explanation:

F =  μN

N = mg

F = μmg

3 N =  μ*0.5 kg * 9.8 m/s²

μ = 3/(0.5*9.8) = 0.6

7 0
3 years ago
Other questions:
  • In a chemical reaction does matter increase, decrease, or disappear.
    9·2 answers
  • What is the acceleration of a 2,000 kg truck if it takes a 5,500 N force to move it forward?
    6·1 answer
  • A −3.0 nC charge is on the x-axis at x=−9 cm and a +4.0 nC charge is on the x-axis at x=16 cm. At what point or points on the y-
    9·1 answer
  • A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sti
    14·1 answer
  • The worlds most powerful tugboats are built in Finland. One of these boats can do 9.8x10^7 J of work through a distance of 35 mi
    6·1 answer
  • Someone please help me! And I will mark you as brainlist!!
    6·1 answer
  • विरामचिन्ह लगाए। 1• क्या शेखर के दादा जी कहा जा रहे है 2• आह मुझे चोट लग गई 3•अब मुझे तोता नहीं चाहिए दादी 4•जैसी आपकी इच्छा साब
    8·1 answer
  • A student is preparing to take a bath when she realizes the hot water tap in
    15·1 answer
  • Metallic iron crystallizes in a body-centered cubic lattice, with one fe atom per lattice point. if the metallic radius of fe is
    15·1 answer
  • How much tension must a cable withstand to accellerate a 1400 kg car vertically upward at 0.70 m/s^2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!