Answer:
A) the maximum acceleration the boulder can have and still get out of the quarry
B) how long does it take to be lifted out at maximum acceleration if it started from rest
Explanation:
A)
let +y is upward. look below at the free body diagram. the mass M refers to the combined mass of the boulder and chain.
the weight of the chain is:
and maximum tension is 
total mass and weight is :


∑



B)
maximum acceleration

using 
to solve for t


You are attracting electricity<span />
The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.
The velocity of B after elastic collision is 3.45m/s
This type of collision is an elastic collision and we can use a formula to solve this problem.
<h3>Elastic Collision</h3>

The data given are;
- m1 = 281kg
- u1 = 2.82m/s
- m2 = 209kg
- u2 = -1.72m/s
- v1 = ?
Let's substitute the values into the equation.

From the calculation above, the final velocity of the car B after elastic collision is 3.45m/s.
Learn more about elastic collision here;
brainly.com/question/7694106
Answer: the photograph will likely show only one star.
Explanation:
Since their angular separation is smaller than the telescope's angular resolution, the picture will apparently show only one star rather than two.