Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
Answer:
The answers are options B,D and E
Explanation:
B) The particles in the liquid are slowly overcoming the forces of attraction and spreading out due to the thermal energy they are absorbing. This makes the liquid less dense as it slowly changes into a gas after reaching its boiling point.
D) The particles start absorbing the energy form the surroundings as latent heat of evaporation. They need this energy to overcome the strong forces of attraction between particles to change into the gaseous state
E) The particles have spaced out due to the thermal energy absorbed, making the liquid lighter and it rises upwards.