from the question you can see that some detail is missing, using search engines i was able to get a similar question on "https://www.slader.com/discussion/question/a-student-throws-a-water-balloon-vertically-downward-from-the-top-of-a-building-the-balloon-leaves-t/"
here is the question : A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's hand with a speed of 60.0m/s. Air resistance may be ignored,so the water balloon is in free fall after it leaves the throwers hand. a) What is its speed after falling for 2.00s? b) How far does it fall in 2.00s? c) What is the magnitude of its velocity after falling 10.0m?
Answer:
(A) 26 m/s
(B) 32.4 m
(C) v = 15.4 m/s
Explanation:
initial speed (u) = 6.4 m/s
acceleration due to gravity (a) = 9.9 m/s^[2}
time (t) = 2 s
(A) What is its speed after falling for 2.00s?
from the equation of motion v = u + at we can get the speed
v = 6.4 + (9.8 x 2) = 26 m/s
(B) How far does it fall in 2.00s?
from the equation of motion
we can get the distance covered
s = (6.4 x 2) + (0.5 x 9.8 x 2 x 2)
s = 12.8 + 19.6 = 32.4 m
c) What is the magnitude of its velocity after falling 10.0m?
from the equation of motion below we can get the velocity

v = 15.4 m/s
Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
The answer that is being described above is the ASTEROIDS. The one that we see floating between Mars and Jupiter is what we call the Asteroid Belt. The asteroid belt comprises of different rocky bodies and they also orbit within the solar system. Hope this helps.
Answer:
The answer is: True.
Explanation:
If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity.
(Credit: Google)