is the type of orbital hybridization of a central atom that has one lone pair and bonds to four other atoms.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about hybridization
brainly.com/question/22765530
#SPJ4
Soil covered, saturated, submerged, flooded w water, standing water
(C) neon (atomic number 10)
Explanation:
The atom that is chemically inert is Neon with an atomic number of 10.
An atom is chemically inert if it does not willingly take part in chemical reaction.
Atoms takes part in chemical reactions in order to attain a stable configuration as seen in the noble gases.
In the noble gases every enable level is completely filled with the appropriate number of electrons.
- The noble gases are He, Ne, Ar, Kr, Xe
- These elements do not react with others.
- From the given option, Neon is a noble gas and therefore inert.
learn more:
Noble gas brainly.com/question/1781595
#learnwithBrainly
Answer:
energy
Explanation:
it is required energy to remove an electron from an atom