Answer:
1. London dispersion
Explanation:
Sulphur trioxide ( SO₃ ) -
The chemical compound SO₃ is planar in structure , the only intermolecular forces shown by SO₃ is the London forces .
dipole - dipole is not observed in this compound , as it is not possible to generate poles between the sulfur and oxygen atom due to very less difference in the electronegativity .
Hydrogen bonding is also not observed , because there is not hydrogen atom .
Hence , only London forces are observed in SO₃ .
Answer:
a) I, II, and III
Explanation:
For the first statement;
Solvation, is the process of attraction and association of molecules of a solvent with molecules or ions of a solute. if the solvent is water, we call this process hydration.
This means the statement is TRUE.
For the second statement;
The negatively-charged side of the water molecules are attracted to positively-charged ions. In the case of water, the oxygen end is the negatively charged side of water. This means the statement is TRUE.
For the third statement;
The positively-charged side of the water molecules are attracted to the negatively-charged chloride ions. In the case of water, the hydrogen end is the positively charged side of water. This means the statement is TRUE.
Going through the options, we can tell that the correct option is option A.
If you have an aqueous solution that contains 1.5 moles of HCl, the number of moles of ions in the solution is 3.0 moles.
<h2>Further Explanation
</h2><h3>Strong acids </h3>
- Strong acids are types of acids that undergo complete dissociation to form ions when dissolved in water.
- Examples of such acids are, HCl, H2SO4 and HNO3
- Dissociation of HCl
HCl + H₂O ⇔ H₃O⁺ + OH⁻
<h3>Weak acids </h3>
- Weak acids are types of acids that undergo incomplete dissociation to form ions when dissolved in water.
- Examples of such acids are acetic acids and formic acids.
- Dissociation of acetic acid
H₃COOH ⇔ CH₃COO⁻ + H⁺; CH₃COO⁻ is a conjugate base of acetic acid.
<h3>In this case;</h3>
- HCl which is a strong acid that ionizes completely according to the equation;
HCl + H₂O ⇔ H₃O⁺ + OH⁻
- From the equation, 1 mole of HCl produces 1 mole of H₃O⁺ ions and 1 mole of OH⁻ ions.
Therefore;
1.5 moles of HCl will produce;
= 1.5 moles of H₃O⁺ ions and 1.5 moles of OH⁻ ions.
This gives a total number ions of;
= 1.5 + 1.5
= 3 moles of ions
Keywords: Strong acid, weak acid, ions, ionization
<h3>Learn more about: </h3>
Level: High school
Subject: Chemistry
Topic: Salts, Acids and Bases
F₂ + 2 NaI → 2 NaF + I₂
<span>It is given that F₂ is light yellow / colorless in hydrocarbon solvent. The student combines Fluorine water with NaI in water. Then student adds pentane in the mixture of F₂ and NaI. After dissolution, solution was observed and a colorless pentane layer was seen. Alkanes are unreactive in nature. The C-H bond in alkane is difficult to break. whereas, F₂ is very reactive and reacts vigorously with alkanes in presence of light by free radical mechanism.It is given that the color of the solution is nearly colorless. F₂ when present in hydrocarbon solvent is light yellow/ colorless/ nearly colorless. Hence, F₂ is not reacting with hydrocarbon and there is no reaction taking place (No F</span>₂ is present<span>)</span>