Answer:
1. A state of balance in which the rates of the forward and reverse reactions are equal.
Explanation:
A dynamic equilibrium is like a cycle, the reactants change to products, but the products also change to reactants keeping the amount of each constant.
2. A state of balance in which the forward reaction stops but reverse reaction continues.
In this statement there isnt a equilibrium. The products will change to reactants until the reaction stops.
3. A state of balance in which the forward reaction continues but reverse reaction stops.
Here the reactants will change to products until the reaction stops.
4. A state of balance in which the forward and reverse reactions stop.
In this case the reaction has stopped.
B is your best answer because a mixture is when two or more things combine but not chemically. Take soup for example you take out all the pieces because they didn't combine together and just become 1 thing they still have parts. You can still take the noodles, you take the fish or meat out still, you take the broth away to.
In nature there are many more variations amino acids than the simple 20 found in humans. However, when analyzing the human genome sequence, there is a code for all 64 permutations (4^3), only some of them share amino acids. This is a safe-guard against mutations of one or two nucleotides. For example, the amino acid Alanine is coded with four different nucleotide sequences: GCA, GCC, GCG, GCU. Also some amino acids code the same like UUU &UUC
A wave with low energy will also have long wavelengths and low frequencies.
The given in a single photon of a wave is given by Planck's equation:
E = hc/λ
and
E = hf
Where λ is the wavelength and f is the frequency of the photon. This means that energy is directly proportional to the frequency and inversely proportional to the wavelength. Thus, it is visible that photons with a lower frequency and a longer wavelength will have a lower energy.