Let the numbers be x and y.
x*y=HCF*LCM=6*60=360
thus
y=360/x
next we find the list of combinations of x and y and test if they satisfy the conditions above:
(6,60),(12,30),(18,20),(24,15)
out of the above, only (6,60) and (12,30) satisfy both conditions. Thus our answer is:
(6,60) or (12,30)
Answer:
B
Step-by-step explanation:
(+)x(-)=(-)
(-)x(-)=(+)
Answer:
17
w + 35
Step-by-step explanation:
You get this answer by using PEMDAS.
Theory:
The standard form of set-builder notation is <span>
{ x | “x satisfies a condition” } </span>
This set-builder notation can be read as “the set
of all x such that x (satisfies the condition)”.
For example, { x | x > 0 } is
equivalent to “the set of all x such that x is greater than 0”.
Solution:
In the problem, there are 2 conditions that must
be satisfied:
<span>1st: x must be a real number</span>
In the notation, this is written as “x ε R”.
Where ε means that x is “a member of” and R means “Real number”
<span>2nd: x is greater than or equal to 1</span>
This is written as “x ≥ 1”
Answer:
Combining the 2 conditions into the set-builder
notation:
<span>
X =
{ x | x ε R and x ≥ 1 } </span>