Answer:
1) wavelength
2) trough
3) amplitude
4) crest
Explanation:
Hope this helps!
Answer:
The correct option is volume stays constant
Explanation:
When a gas container (in this case an aerosol can) is subjected to heat (from fire), the temperature of the can and subsequently <u><em>the temperature of the gas itself increases</em></u>, an increase in the temperature of the gas cause <u><em>the pressure to also increase;</em></u> as the gas molecules will collide more and faster with each other and against the wall of the can. However, the volume of the gas will remain the same as before it was subjected to the heat - the gas particles do not get destroyed or increased as a result of the heat (law of conservation of matter explains this).
Nonpolar and small polar molecules can pass through the cell membrane, so they diffuse across it in response to concentration gradients. Carbon dioxide and oxygen are two molecules that undergo this simple diffusion through the membrane. The simple diffusion of water is known as osmosis.
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
Answer:
Large temperature and air pressure decrease.
Temperature and air pressure increase.
Explanation: