Answer:
1. A. The plant leans toward window.
Explanation:
Plants need light to perform photosynthesis and live. Therefore, this means the plant will always lean toward light in order to survive.
- Hope that helps! Please let me know if you need further explanation.
Molar Mass of CCl4= 12+4(35.5)=154 g/mol g Carbon= 45.0g/(154 g/mol)=0.292 mole
The objects which cannot be observed in detail without a microscope
include the following:
<h3>What is a Microscope?</h3>
A microscope is an instrument which is used to view smaller objects such as
microbe,cells, tissues etc. This instrument is used in viewing the different
cells found in the body as they can't be seen with the eye.
The remaining options which can be seen with the eyes don't require
the use of microscopes.
Read more about Microscope here brainly.com/question/25268499
Answer: Rate in terms of disappearance of
= ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of
= ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of = ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of = ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![+\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
Answer: The molar enthalpy change is 73.04 kJ/mol
Explanation:

moles of HCl= 
As NaOH is in excess 0.0415 moles of HCl reacts with 0.0415 moles of NaOH.
volume of water = 100.0 ml + 50.0 ml = 150.0 ml
density of water = 1.0 g/ml
mass of water = 

q = heat released
m = mass = 150.0 g
c = specific heat = 
= change in temperature = 


Thus 0.0415 mol of HCl produces heat = 3031.3 J
1 mol of HCL produces heat = 
Thus molar enthalpy change is 73.04 kJ/mol