Answer: this process is called photosynthesis
Answer:
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas = 104 kPa
= final pressure of gas = 52 kPa
= initial volume of gas = 
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
I think the correct answer from the choices listed above is option A. The structural level of a protein least affected by a disruption in hydrogen bonding is the primary level. The other levels are very much affected by hydrogen bonding. Hope this answers the question.
Answer: 1. Is2 2s2 2p3
2. Nitrogen
Explanation: The number of electron present In C = 6
But an extra electron is added since the charge on C is -1, this therefore makes the total electron 7.
1. By arrangement, the Electronic configuration is therefore;
Ans: 1s2 2s2 2p3
2. It is explained how C has 7 electrons, we can proceed then.
Neutral atom have atomic number of 7.
The element with atomic number of 7 is;
Ans: NITROGEN
Answer:
The same instrument must be used to measure the unknown solution as was used to measure the known (standard) solutions that were used to create the calibration curve.
The analyte in the unknown solution must be the same analyte (or type of analyte) that is present in the known (standard) solutions that were used to create the calibration curve.
Domain and range restrictions must be observed.
Explanation:
Calibration curves are tools necessary in understanding the instrumental response for any analyte.
A calibration curve is obtained by preparing a set of standard solutions with known concentrations of the analyte. The instrument response for each concentration is measured and plotted against the concentration of the standard solution. The linear portion of this plot may be used to determine the unknown concentration of a sample of the analyte.
The equation of the best-fit line is used to determine the concentration of the unknown sample.