The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
Answer:
Weathering and erosion
Explanation:
Weathering can be explained as the breaking down of rocks/minerals on the surface of the Earth as a result of contact with biological organism, water, air and other factors
. There are 3 common types of weathering which are;
1) physical weathering
2) biological weathering
3) chemical weathering
Erosion can be regarded as a geological process, whereby earthen material are been transported away by natural forces, these forces could be wind as well as water.
Therefore, as you were climbing a a mountain, you noticed that rocks were crumbling below your feet and moving down the mountain. What is observed are weathering and erosion processes.
After the weakening and broken up of the rock by weathering then erosion transport the bit of the rock down the mountain as you are climbing, which means the "weathering process" breakdown and the "erosion process" involves the transport or movement of the bit of the rocks
91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.
Explanation:
2NaN3======2Na+3N2
This is the balanced equation for the decomposition and production of sodium azide required to produce nitrogen.
From the equation:
2 moles of NaNO3 will undergo decomposition to produce 3 moles of nitrogen.
In the question moles of nitrogen produced is given as 2.104 moles
so,
From the stoichiometry,
3N2/2NaN3=2.104/x
= 3/2=2.104/x
3x= 2*2.104
= 1.4 moles
So, 1.4 moles of sodium azide will be required to decompose to produce 2.104 moles of nitrogen.
From the formula
no of moles=mass/atomic mass
mass=no of moles*atomic mass
1.4*65
= 91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.