Answer:
Suspension
Explanation:
This mixture is a simple suspension.
A suspension is a mixture of small insoluble particles of a solid in a liquid or gas. Here, it is insoluble particles in liquid.
- Suspensions are settle on standing this is why they have to be mixed again.
- The particles do not pass through ordinary filter paper.
- They are usually cloudy and have an opaque color.
- The marinade is simply a suspension.
- It is not a solution because they do not settle on standing.
- Also, colloids do not settle on standing.
The molecules will be more separated, and will have least amount of intermolecular force of attraction.
<h3><u>Explanation:</u></h3>
The molecules inside the jar of Lilly are moving around each other. This means the state of the matter present inside the jar is liquid. As Lily gives more energy inside the jar , the molecules inside the jar will get more separated as the kinetic energy of the molecules increase and the intermolecular force of attraction decreases as well as the intermolecular separation or distance increase. As the energy is continued to be supplied from outside, there will be a time when this liquid will reaches boiling point and will start to change into gas. After this point the intermolecular force of attraction will be least among molecules and their separation will be maximum.
According to the balanced chemical equation:
4 HPO₃ + 12 C → 2 H₂ + 12 CO + P₄
4 moles of HPO₃ ---gives---> 12 moles of CO
2.73 moles of HPO₃ ---gives---> ? moles of CO
so number of moles of CO =

= 8.19 moles of CO
Number of molecules of CO = number of moles * Avogadro's number
= 8.19 * (6.022 * 10²³) = 4.93 * 10²⁴ molecules
The temperature change is 23 °C.
<em>q = mC</em>Δ<em>T</em>
Δ<em>T</em> = <em>q</em>/(<em>mC</em>)
<em>m</em> = 355 g
∴ Δ<em>T</em> = (34 000 J)/(355 g × 4.184 J·°C⁻¹g⁻¹) = 23 °C
<em>Note</em>: The answer can have only <em>two significant figures</em> because that is all you gave for the amount of heat absorbed.