Answer:
1.4 × 10^-4.
Explanation:
C3H6O3 + H2O <======> C3H5O3^- + H3O^+ ------------------------------------------(1).
So, from the question above we are given the following parameters or data which is going to help in solving this particular Question/problem;
=>concentration of the solution of lactic acid (CH3CH(OH)C00H) = 0.1 M and pH = 2.44.
Therefore, the concentration of the hydrogen ion[H^+} can be determined from the pH formula given below;
pH = - log { H^+}.
2.44 = - log { H^+}.
Therefore, {H^+} = 0.0036 M.
From the equation (1) given above, we have that the ratio for the equilibrium reaction is 1 : 1 : 1 :1. Therefore, molarity of C3H5O3^- = 0.0036 M and the molarity of C3H6O3 =( 0.1 - 0.0036 M) = 0.0964 M at equilibrium.
Hence, ka = {C3H5O3^-} { H3O^+} /{C3H6O3} = ( 0.0036 M)^2 /(0.0964 M) = 1.4 × 10^-4.
Answer is: ammonia experience only dispersion intermolecular forces with BF₃ (boron trifluoride) because BF₃ is only nonpolar molecule (vectors of dipole moments cansel each other, dipole moment is zero).
The London dispersion force (intermolecular force) <span>is a temporary attractive </span>force between molecules.
Talk to them and listen to each other. if they aren’t ready to talk, give them space. once both of you are ready, you can make up and forgive each other. don’t bother them by asking a lot of questions and forcing them to talk to you. and if they’re doing that, tell them you need time to think. just be sure to talk to them, listen, and understand. tell each other both sides of the stories. of course, different situations can require different solutions. so resolve it when it’s time :)
Answer:
The answer should be C. Primarily in the liver in response to inflammation :)
Have an amazing day!!
Please rate and mark brainliest!!