Yo sup??
Let the percentage of K-39 be x
then the percentage of K-40 is 100-(x+0.01)
We know that the net weight should be 39.5. Therefore we can say
(39*x+40*(100-(x+0.01))+38*0.01)/100=39.5
(since we are taking it in percent)
39*x+40*(100-(x+0.01))+38*0.01=3950
39x+4000-40x-0.4+0.38=3950
2x=49.98
x=24.99
=25 (approx)
Therefore K-39 is 25% in nature and K-40 is 75% in nature.
Hope this helps.
Answer:
When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another.
Explanation:
The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
Iodine has an electronegativity of 2.5, and potassium has an electronegativity of 0.8, so the difference is:
2.5 - 0.8 = 1.7
Metals of Group 1 donate 1 electron from its ns orbital to form ionic bond, where n is the no. of its outermost shell.
Metals of Group 2<span> donate 2 electrons from its ns orbital to form ionic bond, where n is the no. </span>of its <span>outermost shell. </span>