The molar mass is calculated by looking up the relative atomic mass values on a periodic table. The relative atomic mass is a value without units that is calculated on a Carbon-12 scale.
By looking at the periodic table (values will be to 3 significant figures [<em>2</em><em> for hydrogen though]</em>):
Molar mass (M) of 1 mole of Carbon = 12.0 g/mol
Molar mass (M) of 1 mole of Hydrogen = 1.0 g/mol
Molar mass (M) of 1 mole of Oxygen = 16.0 g/mol
So the molar mass is essentially the relative atomic mass (RAM), but molar mass has a unit, but RAM doesn't (it is a ratio).
Given the formula is C6H12O6 (without putting the numbers as subscripts), we can calculate as follows:
M (C6H12O6) = (6 x 12.0) + (12 x 1.0) + (6 x 16.0)
= 72.0 + 12.0 + 96.0
= 180.0 g/mol
Hope it's right :D
A first-order reaction is 81omplete in 264s.The half-life for this reaction (i) t 1/2 = =3.465×10 −3 s.to reach 95% Completion = 285 s.
To measure reaction rates, chemists initiate the reaction, measure the concentration of the reactant or product at different times as the reaction progresses,
For a 0-order response, the mathematical expression that may be employed to determine the half of life is: t1/2 = [R]0/2k. For a first-order reaction, the half of-existence is given by: t1/2 = zero.693/ok. For a 2d-order response, the method for the half-life of the response is: 1/okay[R]0
The 1/2-life of a response (t1/2), is the quantity of time needed for a reactant concentration to lower via half of compared to its initial awareness. Its software is used in chemistry and medicine to are expecting the awareness of a substance over time
Half of the lifestyles is the time required for exactly 1/2 of the entities to decay 50%.
Learn more about first order reaction here:-
#SPJ4
Answer: The reaction order with respect to A is m
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
For the given reaction:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In this equation, the order with respect to each reactant is not equal to its stoichiometric coefficient which is represented in the balanced chemical reaction.
Hence, this is not considered as an elementary reaction.
Order with respect to A = m
Order with respect to B = n
Overall order = m+n
Thus order with respect to A is m.
The answer to the question is D.
Methane.
Water - H2O
Methane - CH4
Methane has 2 more hydrogens than water.